False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning

Author:

Lee Yeunghak,Shim Jaechang

Abstract

Fire must be extinguished early, as it leads to economic losses and losses of precious lives. Vision-based methods have many difficulties in algorithm research due to the atypical nature fire flame and smoke. In this study, we introduce a novel smoke detection algorithm that reduces false positive detection using spatial and temporal features based on deep learning from factory installed surveillance cameras. First, we calculated the global frame similarity and mean square error (MSE) to detect the moving of fire flame and smoke from input surveillance cameras. Second, we extracted the fire flame and smoke candidate area using the deep learning algorithm (Faster Region-based Convolutional Network (R-CNN)). Third, the final fire flame and smoke area was decided by local spatial and temporal information: frame difference, color, similarity, wavelet transform, coefficient of variation, and MSE. This research proposed a new algorithm using global and local frame features, which is well presented object information to reduce false positive based on the deep learning method. Experimental results show that the false positive detection of the proposed algorithm was reduced to about 99.9% in maintaining the smoke and fire detection performance. It was confirmed that the proposed method has excellent false detection performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference55 articles.

1. Fire Loss in the United States during 2017 https://www.nfpa.org/~/media/FD0144A044C84FC5BAF90C05C04890B7.ashx

2. The development of UV-IR combination flame detector;Lee;J. KIIS,2001

3. Design and analysis of flame signal detection with the combination of UV/IR sensors;Kang;J. Korean Soc. Int. Inf.,2013

4. Fire Detection using Color and Motion Models

5. High-order local ternary patterns with locality preserving projection for smoke detection and image classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3