Toward Developing Efficient Conv-AE-Based Intrusion Detection System Using Heterogeneous Dataset

Author:

Khan Muhammad AshfaqORCID,Kim JuntaeORCID

Abstract

Recently, due to the rapid development and remarkable result of deep learning (DL) and machine learning (ML) approaches in various domains for several long-standing artificial intelligence (AI) tasks, there has an extreme interest in applying toward network security too. Nowadays, in the information communication technology (ICT) era, the intrusion detection (ID) system has the great potential to be the frontier of security against cyberattacks and plays a vital role in achieving network infrastructure and resources. Conventional ID systems are not strong enough to detect advanced malicious threats. Heterogeneity is one of the important features of big data. Thus, designing an efficient ID system using a heterogeneous dataset is a massive research problem. There are several ID datasets openly existing for more research by the cybersecurity researcher community. However, no existing research has shown a detailed performance evaluation of several ML methods on various publicly available ID datasets. Due to the dynamic nature of malicious attacks with continuously changing attack detection methods, ID datasets are available publicly and are updated systematically. In this research, spark MLlib (machine learning library)-based robust classical ML classifiers for anomaly detection and state of the art DL, such as the convolutional-auto encoder (Conv-AE) for misuse attack, is used to develop an efficient and intelligent ID system to detect and classify unpredictable malicious attacks. To measure the effectiveness of our proposed ID system, we have used several important performance metrics, such as FAR, DR, and accuracy, while experiments are conducted on the publicly existing dataset, specifically the contemporary heterogeneous CSE-CIC-IDS2018 dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3