Mitigation of Nonlinear Distortions for a 100 Gb/s Radio-Over-Fiber-Based WDM Network

Author:

Rahman SaifurORCID,Ali FarmanORCID,Smagor Adrian,Muhammad FazalORCID,Habib UsmanORCID,Glowacz AdamORCID,Ahmad Shabbir,Irfan MuhammadORCID,Smalcerz Albert,Kula Adam,Mursal Salim Nasar Faraj

Abstract

Next-generation cloud radio access networks (C-RANs) are anticipated to provide multi-Gbps data rate transmission and ultra-high bandwidth capacity, which is one of the key performance indicators for future mobile networks. The integral layout of fiber optics and radio network manages the capabilities of the C-RAN, but needs to be optimized in terms of cost, reliability and further scalibility. For C-RAN architectures, Radio over Fiber (RoF) transport-based fronthaul is a promising candidate but the associated issues of distortions due to nonlinear impairments (NLIs) from power amplifier, linear distortions (LDs) due to modulating lasers and high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals need to be addressed. This work investigates these performance limiting factors and presents a DSP receiver-based solution to mitigate the effects of NLIs, LDs and high PAPR. Simulations are performed by applying a various range of transmission input powers, different quadrature amplitude modulation (QAM) formats for the OFDM signal, optimized filtering at the receiver end and varying channel spacing among the optical WDM channels to analyze the performance of the proposed receiver under different conditions. The simulations and theoretical model of the proposed case studies verify that the presented solution for the RoF transport utilize less power, performs better for longer transmission distances, supports higher modulation formats and transports large number of WDM channels in the presence of NLIs and DLs as compared to the conventional RoF approach. With compensation of NLIs and LDs, transmission distance up to 10 km is investigated using 16 WDM channels with aggregate data rate of 100 Gb/s which shows that the proposed receiver can be used for future C-RAN fronthaul networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3