A Deep Learning Instance Segmentation Approach for Global Glomerulosclerosis Assessment in Donor Kidney Biopsies

Author:

Altini NicolaORCID,Cascarano Giacomo DonatoORCID,Brunetti AntonioORCID,De Feudis Irio,Buongiorno DomenicoORCID,Rossini Michele,Pesce Francesco,Gesualdo LoretoORCID,Bevilacqua VitoantonioORCID

Abstract

The histological assessment of glomeruli is fundamental for determining if a kidney is suitable for transplantation. The Karpinski score is essential to evaluate the need for a single or dual kidney transplant and includes the ratio between the number of sclerotic glomeruli and the overall number of glomeruli in a kidney section. The manual evaluation of kidney biopsies performed by pathologists is time-consuming and error-prone, so an automatic framework to delineate all the glomeruli present in a kidney section can be very useful. Our experiments have been conducted on a dataset provided by the Department of Emergency and Organ Transplantations (DETO) of Bari University Hospital. This dataset is composed of 26 kidney biopsies coming from 19 donors. The rise of Convolutional Neural Networks (CNNs) has led to a realm of methods which are widely applied in Medical Imaging. Deep learning techniques are also very promising for the segmentation of glomeruli, with a variety of existing approaches. Many methods only focus on semantic segmentation—which consists in segmentation of individual pixels—or ignore the problem of discriminating between non-sclerotic and sclerotic glomeruli, so these approaches are not optimal or inadequate for transplantation assessment. In this work, we employed an end-to-end fully automatic approach based on Mask R-CNN for instance segmentation and classification of glomeruli. We also compared the results obtained with a baseline based on Faster R-CNN, which only allows detection at bounding boxes level. With respect to the existing literature, we improved the Mask R-CNN approach in sliding window contexts, by employing a variant of the Non-Maximum Suppression (NMS) algorithm, which we called Non-Maximum-Area Suppression (NMAS). The obtained results are very promising, leading to improvements over existing literature. The baseline Faster R-CNN-based approach obtained an F-Measure of 0.904 and 0.667 for non-sclerotic and sclerotic glomeruli, respectively. The Mask R-CNN approach has a significant improvement over the baseline, obtaining an F-Measure of 0.925 and 0.777 for non-sclerotic and sclerotic glomeruli, respectively. The proposed method is very promising for the instance segmentation and classification of glomeruli, and allows to make a robust evaluation of global glomerulosclerosis. We also compared Karpinski score obtained with our algorithm to that obtained with pathologists’ annotations to show the soundness of the proposed workflow from a clinical point of view.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3