A Hybrid Modified Method of the Sine Cosine Algorithm Using Latin Hypercube Sampling with the Cuckoo Search Algorithm for Optimization Problems

Author:

Rosli Siti JuliaORCID,Rahim Hasliza AORCID,Abdul Rani Khairul Najmy,Ngadiran Ruzelita,Ahmad R. Badlishah,Yahaya Nor ZakiahORCID,Abdulmalek Mohamedfareq,Jusoh MuzammilORCID,Yasin Mohd Najib Mohd,Sabapathy ThennarasanORCID,Andrew Allan MelvinORCID

Abstract

The metaheuristic algorithm is a popular research area for solving various optimization problems. In this study, we proposed two approaches based on the Sine Cosine Algorithm (SCA), namely, modification and hybridization. First, we attempted to solve the constraints of the original SCA by developing a modified SCA (MSCA) version with an improved identification capability of a random population using the Latin Hypercube Sampling (LHS) technique. MSCA serves to guide SCA in obtaining a better local optimum in the exploitation phase with fast convergence based on an optimum value of the solution. Second, hybridization of the MSCA (HMSCA) and the Cuckoo Search Algorithm (CSA) led to the development of the Hybrid Modified Sine Cosine Algorithm Cuckoo Search Algorithm (HMSCACSA) optimizer, which could search better optimal host nest locations in the global domain. Moreover, the HMSCACSA optimizer was validated over six classical test functions, the IEEE CEC 2017, and the IEEE CEC 2014 benchmark functions. The effectiveness of HMSCACSA was also compared with other hybrid metaheuristics such as the Particle Swarm Optimization–Grey Wolf Optimization (PSOGWO), Particle Swarm Optimization–Artificial Bee Colony (PSOABC), and Particle Swarm Optimization–Gravitational Search Algorithm (PSOGSA). In summary, the proposed HMSCACSA converged 63.89% faster and achieved a shorter Central Processing Unit (CPU) duration by a maximum of up to 43.6% compared to the other hybrid counterparts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. Metaheuristic optimization: Algorithm analysis and open;Yang,2011

2. Engineering Optimization: An Introduction with Metaheuristic Applications;Yang,2010

3. Evolutionary Algorithms for Solving Multi-Objective Problems;Coello,2007

4. Genetic algorithm optimization problems;Sivanandam,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3