Development and Experimental Analysis of a Fuzzy Grey Control System on Rapeseed Cleaning Loss

Author:

Chai Xiaoyu,Xu Lizhang,Li Yang,Qiu Jie,Li Yaoming,Lv Liya,Zhu Yahui

Abstract

One of the most important means of improving the mechanization of rapeseed harvests and increasing farmers’ income is to reduce the cleaning loss of rapeseed. In this study, a fuzzy grey control system was developed using an assembled cleaning loss sensor. Based on experimental data, the relationship between the cleaning loss and the opening of the louver sieve in the cleaning device was obtained. The fuzzy control scheme was established by combining grey prediction and the fuzzy control principle. Secondly, a microcontroller unit (MCU) was used as the controller, and the opening of the louver sieve was automatically regulated by detecting the signal of the cleaning loss. Finally, the performance and robustness of the control system was evaluated in field tests. Different experiments were conducted under different speed conditions to reflect the variable throughput. Results showed that using the grey prediction control system can realize the adjustment of the louver sieve opening in real time. The cleaning loss could be maintained within the ideal setpoint interval, compared with the operation with the control system switched off. These findings indicate that the application of the grey fuzzy control system reduces cleaning loss, and the nonlinear, time-variable and time delay problems in cleaning devices can be solved effectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. Design of main working parts of 4LYB1-2.0 rape combine harvester;Xu;Trans. CSAM,2008

2. Sensor for monitoring rice grain sieve losses in combine harvesters

3. Dynamic analysis of grain impact on grain loss sensor of combine harvester;Wang;J. Agric. Mech. Res.,1997

4. Design of intelligent grain cleaning losses monitor based on array piezocrystals;Mao;Trans. CSAM,2010

5. Chaos detection of grain impact at combine cleaning loss sensor;Gao;Trans. CSAE,2011

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3