A Novel Unmanned Aerial Vehicle Charging Scheme for Wireless Rechargeable Sensor Networks in an Urban Bus System

Author:

Lin Tu-LiangORCID,Chang Hong-YiORCID,Wang Yu-Hsin

Abstract

Wireless sensor networks (WSNs) are implemented in many aspects of daily life, such as Internet of Things applications, industrial automation, and intelligent agriculture. Sensors are typically powered by batteries. Chargers can be used to supply power to sensor nodes and thus extend the lifetime of WSNs. This special type of network is named a wireless rechargeable sensor network (WRSN). However, due to the limited battery power and different deployment locations of the sensors, efficiently moving the chargers from the current sensor nodes to the next sensor nodes is a challenge. In this study, we propose an unmanned aerial vehicle (UAV)-based charging scheme in an urban bus system, involving the coordination between UAVs and bus schedules. The UAVs can be recharged by urban buses and then supply the power to sensor nodes. We implemented three charging strategies: naïve, shortest path, and max power. In the naïve strategy, the UAVs fly directly to sensor nodes when the sensors are lacking power. In the shortest path strategy, the minimum distance between the sensor node and bus location is calculated, and the UAVs fly the shortest path to the sensor nodes. In the maximum power charging strategy, the UAV that has the highest battery power is assigned to work. The experimental results show that the shortest path charging and max power charging strategies perform better than naïve charging in different parameter settings. To prolong the lifetime of the network system, adjusting the bus frequency according to the number of nearby sensors around the bus route is favorable.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3