Abstract
With the rapid development of the Internet, and its enormous impact on all aspects of life, traditional financial companies increasingly focus on the user’s online reviews, aiming to promote competitiveness and quality of service in the products of this enterprise. Due to the difficulty of extracting comment text compared with structured data itself, coupled with the fact that it is too colloquial, the traditional model insufficiently semantically represents sentences, resulting in unsatisfactory extraction results. Therefore, this paper selects RoBERTa, a pre-trained language model that has exhibited an excellent performance in recent years, and proposes a joint model of financial product opinion and entities extraction based on RoBERTa multi-layer fusion for the two tasks of opinion and entities extraction. The experimental results show that the performance of the proposed joint model on the financial reviews dataset is significantly better than that of the single model.
Funder
Zhejiang Provincial Natural Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献