Hybrid Spatiotemporal Contrastive Representation Learning for Content-Based Surgical Video Retrieval

Author:

Kumar ViditORCID,Tripathi Vikas,Pant Bhaskar,Alshamrani Sultan S.ORCID,Dumka Ankur,Gehlot Anita,Singh RajeshORCID,Rashid Mamoon,Alshehri AbdullahORCID,AlGhamdi Ahmed SaeedORCID

Abstract

In the medical field, due to their economic and clinical benefits, there is a growing interest in minimally invasive surgeries and microscopic surgeries. These types of surgeries are often recorded during operations, and these recordings have become a key resource for education, patient disease analysis, surgical error analysis, and surgical skill assessment. However, manual searching in this collection of long-term surgical videos is an extremely labor-intensive and long-term task, requiring an effective content-based video analysis system. In this regard, previous methods for surgical video retrieval are based on handcrafted features which do not represent the video effectively. On the other hand, deep learning-based solutions were found to be effective in both surgical image and video analysis, where CNN-, LSTM- and CNN-LSTM-based methods were proposed in most surgical video analysis tasks. In this paper, we propose a hybrid spatiotemporal embedding method to enhance spatiotemporal representations using an adaptive fusion layer on top of the LSTM and temporal causal convolutional modules. To learn surgical video representations, we propose exploring the supervised contrastive learning approach to leverage label information in addition to augmented versions. By validating our approach to a video retrieval task on two datasets, Surgical Actions 160 and Cataract-101, we significantly improve on previous results in terms of mean average precision, 30.012 ± 1.778 vs. 22.54 ± 1.557 for Surgical Actions 160 and 81.134 ± 1.28 vs. 33.18 ± 1.311 for Cataract-101. We also validate the proposed method’s suitability for surgical phase recognition task using the benchmark Cholec80 surgical dataset, where our approach outperforms (with 90.2% accuracy) the state of the art.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intelligent surgical video retrieval for computer vision enhancement in medical diagnosis using deep learning techniques;Multimedia Tools and Applications;2024-05-29

2. Semantic-Preserving Surgical Video Retrieval With Phase and Behavior Coordinated Hashing;IEEE Transactions on Medical Imaging;2024-02

3. Content-Based Video Clustering Using Hybrid Multi -View Spatio- Temporal Feature Learning;2023 18th International Conference on Intelligent Systems and Knowledge Engineering (ISKE);2023-11-17

4. Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval;Computer Systems Science and Engineering;2023

5. Monkeypox Disease Diagnosis using Machine Learning Approach;2022 8th International Conference on Signal Processing and Communication (ICSC);2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3