Neuron Circuit Failure and Pattern Learning in Electronic Spiking Neural Networks

Author:

Gandharava Sumedha,Ivans Robert C.,Etcheverry Benjamin R.,Cantley Kurtis D.

Abstract

Biological neural networks demonstrate remarkable resilience and the ability to compensate for neuron losses over time. Thus, the effects of neural/synaptic losses in the brain go mostly unnoticed until the loss becomes profound. This study analyses the capacity of electronic spiking networks to compensate for the sudden, random neuron failure (“death”) due to reliability degradation or other external factors such as exposure to ionizing radiation. Electronic spiking neural networks with memristive synapses are designed to learn spatio-temporal patterns representing 25 or 100-pixel characters. The change in the pattern learning ability of the neural networks is observed as the afferents (input layer neurons) in the network fail/die during network training. Spike-timing-dependent plasticity (STDP) learning behavior is implemented using shaped action potentials with a realistic, non-linear memristor model. This work focuses on three cases: (1) when only neurons participating in the pattern are affected, (2) when non-participating neurons (those that never present spatio-temporal patterns) are disabled, and (3) when random/non-selective neuron death occurs in the network (the most realistic scenario). Case 3 is further analyzed to compare what happens when neuron death occurs over time versus when multiple afferents fail simultaneously. Simulation results emphasize the importance of non-participating neurons during the learning process, concluding that non-participating afferents contribute to improving the learning ability and stability of the neural network. Instantaneous neuron death proves to be more detrimental for the network compared to when afferents fail over time. To a surprising degree, the electronic spiking neural networks can sometimes retain their pattern recognition capability even in the case of significant neuron death.

Funder

Defense Threat Reduction Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3