Short-Term Traffic-Flow Forecasting Based on an Integrated Model Combining Bagging and Stacking Considering Weight Coefficient

Author:

Li ZhaohuiORCID,Wang Lin,Wang DeyaoORCID,Yin Ming,Huang Yujin

Abstract

This work proposed an integrated model combining bagging and stacking considering the weight coefficient for short-time traffic-flow prediction, which incorporates vacation and peak time features, as well as occupancy and speed information, in order to improve prediction accuracy and accomplish deeper traffic flow data feature mining. To address the limitations of a single prediction model in traffic forecasting, a stacking model with ridge regression as the meta-learner is first established, then the stacking model is optimized from the perspective of the learner using the bagging model, and lastly the optimized learner is embedded into the stacking model as the new base learner to obtain the Ba-Stacking model. Finally, to address the Ba-Stacking model’s shortcomings in terms of low base learner utilization, the information structure of the base learners is modified by weighting the error coefficients while taking into account the model’s external features, resulting in a DW-Ba-Stacking model that can change the weights of the base learners to adjust the feature distribution and thus improve utilization. Using 76,896 data from the I5NB highway as the empirical study object, the DW-Ba-Stacking model is compared and assessed with the traditional model in this paper. The empirical results show that the DW-Ba-Stacking model has the highest prediction accuracy, demonstrating that the model is successful in predicting short-term traffic flows and can effectively solve traffic-congestion problems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Dynamic prediction of traffic volume through Kalman filtering theory;Iwao;Pergamon,1984

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3