A Unified Forensic Model Applicable to the Database Forensics Field

Author:

Alhussan Amel AliORCID,Al-Dhaqm ArafatORCID,Yafooz Wael M. S.ORCID,Emara Abdel-Hamid M.ORCID,Bin Abd Razak ShukorORCID,Khafaga Doaa SamiORCID

Abstract

The Database Forensics Investigation (DBFI) field is focused on capturing and investigating database incidents. DBFI is a subdomain of the digital forensics domain, which deals with database files and dictionaries to identify, acquire, preserve, examine, analyze, reconstruct, present, and document database incidents. Several frameworks and models have been offered for the DBFI field in the literature. However, these specific models and frameworks have redundant investigation processes and activities. Therefore, this study has two aims: (i) conducting a compressive survey to discover the challenges and issues of the DBFI field and (ii) developing a Unified forensic model for the database forensics field. To this end, the design science research (DSR) method was used in this study. The results showed that the DBFI field suffers from many issues such as the lack of standardization, multidimensional nature, heterogeneity, and ambiguity, making it complex for those working in this domain. In addition, a model was proposed in this paper, called the Unified Forensic Model (UFM), which consists of five main stages: initialization stage, acquiring stage, investigation stage, restoring and recovering stage, and evaluation stage. Each stage has several processes and activities. The applicability of UFM was evaluated from two perspectives: completeness and implementation perspectives. UFM is a novel model covering all existing DBFI models and comprises two new stages: the recovering and restoring stage and the evaluation stage. The proposed UFM is so flexible that any forensic investigator could employ it easily when investigating database incidents.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3