Abstract
In many scientific fields, the continuous operation of ultra-stable lasers is crucial for applications. To speed up the frequency stabilization process in case of the occurence of unexpected interruptions, a prompt frequency stabilization approach based on an improved mean shift algorithm is proposed and verified with a homemade laser system. We developed a double-loop feedback controller to steer the laser frequency with fast and slow channels, respectively. In this study, an improved mean shift algorithm is utilized to intelligently search for the transmission signal, which involves adaptively updating the sliding window radius and incorporating a Gaussian kernel function to update the shift vector. The number of lock points on the left and right sides of the central point determines the scanning direction to search for the transmission signal quickly. The laser is intentionally interrupted 306 times within 10,000 s to evaluate the relocking performance. The median auto-locking time of the laser is improved from 16 s to 4 s. By beating with another ultra-stable laser system, the laser frequency instability is measured to be less than 2.1×10−14 and the linewidth is 5 Hz. This work improves the adaptation and relocking ability of the ultra-stable laser in a complex environment.
Funder
National Natural Science Foundation of China
the Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献