Delivering Extended Cellular Coverage and Capacity Using High-Altitude Platforms

Author:

Arum Steve ChukwuebukaORCID,Grace DavidORCID,Mitchell Paul DanielORCID

Abstract

Interest in delivering cellular communication using a high-altitude platform (HAP) is increasing partly due to its wide coverage capability. In this paper, we formulate analytical expressions for estimating the area of a HAP beam footprint, average per-user capacity per cell, average spectral efficiency (SE) and average area spectral efficiency (ASE), which are relevant for radio network planning, especially within the context of HAP extended contiguous cellular coverage and capacity. To understand the practical implications, we propose an enhanced and validated recursive HAP antenna beam-pointing algorithm, which forms HAP cells over an extended service area while considering beam broadening and the degree of overlap between neighbouring beams. The performance of the extended contiguous cellular structure resulting from the algorithm is compared with other alternative schemes using the carrier-to-noise ratio (CNR) and carrier-to-interference-plus-noise ratio (CINR). Results show that there is a steep reduction in average ASE at the edge of coverage. The achievable coverage is limited by the minimum acceptable average ASE at the edge, among other factors. In addition, the results highlight that efficient beam management can be achieved using the enhanced and validated algorithm, which significantly improves user CNR, CINR, and coverage area compared with other benchmark schemes. A simulated annealing comparison verifies that such an algorithm is close to optimal.

Funder

Orange

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3