Predictive Maintenance System for Wafer Transport Robot Using K-Means Algorithm and Neural Network Model

Author:

Yoo Ji-Hyun,Park Young-Kook,Han Seung-Soo

Abstract

Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and maintenance costs caused by equipment failure. A new Predictive Maintenance (PdM) technique, a new method of maintenance, is introduced in this paper to develop an algorithm for predicting the failure of wafer transfer robots in advance. The acceleration sensor data used in the experiment were obtained by installing a sensor onto the wafer transfer robot. To analyze these data, the data preprocessing and FFT process were performed. These data were divided into normal data, first error data, second error data, and third error data (failure data) in stages. By clustering the data using the K-means algorithm, the center point distribution of the clusters was analyzed, and the features of the error data and normal data were extracted. Using these features, an artificial neural network model was designed to predict the point of failure of the robot. Previous research on maintenance systems of the transfer robot used fewer than 50 error data, but 1686 error data were used in this experiment. The reliability of the model is improved by randomly selecting data from a total of 2248 data sets. In addition, it was confirmed that it was possible to classify normal data and error data with an accuracy of 97% and to predict equipment failure by applying neural network modeling.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

1. 5 Use Cases for Predictive Maintenance and Big Data https://blogs.oracle.com/bigdata/post/5-use-cases-for-predictive-maintenance-and-big-data

2. A systematic literature review of machine learning methods applied to predictive maintenance

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3