Resilience of Reed-Solomon Codes against Single-Frequency Electromagnetic Disturbances: Fault Mechanisms and Fault Elimination through Symbol Inversion

Author:

Memar PejmanORCID,Vankeirsbilck JensORCID,Vanoost DriesORCID,Claeys TimORCID,Pissoort DavyORCID,Boydens JeroenORCID

Abstract

Modern safety-critical systems depend heavily on communication networks while operating in increasingly polluted electromagnetic environments. Forward Error Correction codes are increasingly being used in safety-critical applications; however, vulnerabilities can still be caused by undetected corrupted data. Within this paper, the effectiveness of primitive Reed–Solomon Codes under single-frequency electromagnetic disturbances is assessed. Additionally, the impact of various parameters including the message length, the Reed–Solomon Codes’ symbol size, and the amplitude of the induced voltages are also investigated. Simulations show that, at harmonics and some certain ratios of the bit-rate frequency, the susceptibility of Reed–Solomon Codes relative to this type of disturbance increases substantially. In worse-case scenarios, the rate of undetected corrupted data at these ratios could increase to values above 80%. It is shown that the main reason that Reed–Solomon Codes fail to detect such errors is due to the repetitive nature of code words’ symbols, as well as a special relation among the symbol size, the channel’s bit-rate, and the disturbance frequency. Accordingly, this paper proposes to add an extra inversion layer to the communication protocol to enhance the resiliency of these codes against single-frequency electromagnetic disturbances. Finally, it is shown that the proposed layer substantially mitigates the ratio of undetected corrupted data under the considered electromagnetic environment. By using the proposed approach, the rate of undetected corrupted data at the frequencies of concern decreased to values near 0%.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3