Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition

Author:

Wang BinORCID,Wang Shunan,Zeng Dan,Wang Min

Abstract

The antenna scanning period (ASP) of radar is a crucial parameter in electronic warfare (EW) which is used in many applications, such as radar work pattern recognition and emitter recognition. For antennas of radars and EW systems, which perform scanning circularly, the method based on threshold measurement is invalid. To overcome this shortcoming, this study proposes a method using the convolutional neural network (CNN) to recognize the ASP of radar under the condition that antennas of the radar and EW system both scan circularly. A system model is constructed, and factors affecting the received signal power are analyzed. A CNN model for rapid and accurate ASP radar classification is developed. A large number of received signal time–power images of three separate ASPs are used for the training and testing of the developed model under different experimental conditions. Numerical experiment results and performance comparison demonstrate high classification accuracy and effectiveness of the proposed method in the condition that antennas of radar and EW system are circular scan, where the average recognition accuracy for radar ASP is at least 90% when the signal to-noise ratio (SNR) is not less than 30 dB, which is significantly higher than the recognition accuracy of NAC and AFT methods based on adaptive threshold detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3