High-Power Electromagnetic Pulse Effect Prediction for Vehicles Based on Convolutional Neural Network

Author:

Cao Le,Hao Shuai,Zhao Yuan,Wang Cheng

Abstract

This study presents a prediction model for high-power electromagnetic pulse (HPEMP) effects on aboveground vehicles based on convolutional neural networks (CNNs). Since a vehicle is often located aboveground and is close to the air-ground–half-space interface, the electromagnetic energy coupled into the vehicle by the ground reflected waves cannot be ignored. Consequently, the analysis of the vehicle’s HPEMP effect is a composite electromagnetic scattering problem of the half-space and the vehicles above it, which is often analyzed using different half-space numerical methods. However, traditional numerical methods are often limited by the complexity of the actual half-space models and the high computational demands of complex targets. In this study, a prediction method is proposed based on a CNN, which can analyze the electric field and energy density under different incident conditions and half-space environments. Compared with the half-space finite-difference time-domain (FDTD) method, the accuracy of the prediction results was above 98% after completing the training of the CNN network, which proves the correctness and effectiveness of the method. In summary, the CNN prediction model in this study can provide a reference for evaluating the HPEMP effect on the target over a complex half-space medium.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3