BER Minimization by User Pairing in Downlink NOMA Using Laser Chaos Decision-Maker

Author:

Sugiyama Masaki,Li AohanORCID,Duan Zengchao,Naruse MakotoORCID,Hasegawa MikioORCID

Abstract

In next-generation wireless communication systems, non-orthogonal multiple access (NOMA) has been recognized as essential technology for improving the spectrum efficiency. NOMA allows multiple users transmit data using the same resource block simultaneously with proper user pairing. Most of the pairing schemes, however, require prior information, such as location information of the users, leading to difficulties in realizing prompt user pairing. To realize real-time operations without prior information in NOMA, a bandit algorithm using chaotically oscillating time series, which we refer to as the laser chaos decision-maker, was demonstrated. However, this scheme did not consider the detailed communication processes, e.g., modulation, error correction code, etc. In this study, in order to adapt the laser chaos decision-maker to real communication systems, we propose a user pairing scheme based on acknowledgment (ACK) and negative acknowledgment (NACK) information considering detailed communication channels. Furthermore, based on the insights gained by the analysis of parameter dependencies, we introduce an adaptive pairing method to minimize the bit error rate of the NOMA system under study. The numerical results show that the proposed method achieves superior performances than the traditional using pairing schemes, i.e., Conventional-NOMA pairing scheme (C-NOMA) and Unified Channel Gain Difference pairing scheme (UCGD-NOMA), and ϵ-greedy-based user pairing scheme. As the cell radius of the NOMA system gets smaller, the superior on the BER of our proposed scheme gets bigger. Specifically, our proposed scheme can decrease the BER from 10−1 to 10−5 compared to the conventional schemes when the cell radius is 400 m.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3