Abstract
A novel dual-mode control scheme is proposed in this paper that permits the active-clamp flyback (ACF) converter to operate in both the quasi-resonant (QR) mode under light load and the active-clamp mode under medium or heavy load. The mode transition is performed based on the external dual-mode control circuit. In addition, the proposed converter incorporates a new QR mode valley switching (VS) control circuit that reduces switching loss in the main switch by achieving VS. Under medium to full load, the proposed converter becomes an ACF converter designed to achieve zero-voltage switching (ZVS), which reduces switching losses in both power switches. The proposed dual-mode control ACF converter has the following advantages: (1) compared with conventional ACF converters, the proposed ACF converters minimize switching losses by combining VS and ZVS; (2) under light load conditions, the frequency-limiting QR control mechanism is used to avoid disadvantageous switching losses caused by high switching frequencies. The 65 W ACF converter prototype with a DC 155 V input and a DC 19 V/3.42 A output under 65 kHz switching frequency was implemented. The experimental results demonstrate the feasibility of the proposed control scheme. The efficiency of the proposed converter reached 79% at a load of 3.5 W, which is 11% higher than the conventional ACF converter.
Funder
Ministry of Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献