Abstract
For a broken rail detection system based on ultrasonic guided waves (UGW), the multimodal and dispersion characteristics of UGW degrade signal-to-noise ratio (SNR) and range resolution. To improve the SNR of the received signals and range resolution, the coded excitation based on Kasami sequences is presented in this work. Utilizing a PSpice model of piezoelectric ultrasonic transducers, as well as conducting field tests based on the pitch–catch mechanism, it is shown that encoded UGW signals can increase the SNRG (the gain of SNR) by 6.29 dB. The main lobe width of the coded excitation is mainly determined by the number of carrier cycles and the carrier waveform, and the size of the side lobes is mainly determined by the number of coding bits. To quickly identify the corresponding transmissions at the receivers, a peak detection algorithm is shown. It is based on bandpass filter, triangle filter and Hilbert transform. Its accuracy and effectiveness are validated by using some field tests under different distances. It can be concluded that the shown adaptive peak algorithm has strong robustness and immunity to noise.
Funder
National Natural Science Foundation of China
Youth Science and Technology Foundation of Gansu Province, China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献