Abstract
The ever-increasing demands on the efficiency and power density of power electronics converters lead to the replacement of traditional silicon-based components with new structures. One of the promising technologies represents devices based on Gallium-Nitride (GaN). Compared to silicon transistors, GaN semiconductor switches offer superior performance in high-frequency converters, since their fast switching process significantly decreases the switching losses. However, when used in hard-switched converters such as voltage-source inverters (VSI) for motor control applications, GaN transistors increase the power dissipated due to the current conduction. The loss increase is caused by the current-collapse phenomenon, which increases the dynamic drain-source resistance of the device shortly after the turn-on. This disadvantage makes it hard for GaN converters to compete with other technologies in electric drives. Therefore, this paper offers a purely software-based solution to mitigate the negative consequences of the current-collapse phenomenon. The proposed method is based on the minimum pulse length optimization of the classical 7-segment space-vector modulation (SVM) and is verified within a field-oriented control (FOC) of a three-phase permanent magnet synchronous motor (PMSM) supplied by a two-level GaN VSI. The compensation in the control algorithm utilizes an offline measured look-up table dependent on the machine input power.
Funder
Student Grant Competition of the Czech Technical University in Prague
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献