Development of a Face Prediction System for Missing Children in a Smart City Safety Network

Author:

Wang Ding-Chau,Tsai Zhi-Jing,Chen Chao-Chun,Horng Gwo-JiunORCID

Abstract

Cases of missing children not being found are rare, but they continue to occur. If the child is not found immediately, the parents may not be able to identify the child’s appearance because they have not seen their child for a long time. Therefore, our purpose is to predict children’s faces when they grow up and help parents search for missing children. DNA paternity testing is the most accurate way to detect whether two people have a blood relation. However, DNA paternity testing for every unidentified child would be costly. Therefore, we propose the development of the Face Prediction System for Missing Children in a Smart City Safety Network. It can predict the faces of missing children at their current age, and parents can quickly confirm the possibility of blood relations with any unidentified child. The advantage is that it can eliminate incorrect matches and narrow down the search at a low cost. Our system combines StyleGAN2 and FaceNet methods to achieve prediction. StyleGAN2 is used to style mix two face images. FaceNet is used to compare the similarity of two face images. Experiments show that the similarity between predicted and expected results is more than 75%. This means that the system can well predict children’s faces when they grow up. Our system has more natural and higher similarity comparison results than Conditional Adversarial Autoencoder (CAAE), High Resolution Face Age Editing (HRFAE) and Identity-Preserved Conditional Generative Adversarial Networks (IPCGAN).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference55 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3