Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication

Author:

Gelbal Sukru Yaren1,Aksun-Guvenc Bilin1,Guvenc Levent1ORCID

Affiliation:

1. Automated Driving Laboratory, Ohio State University, Columbus, OH 43212, USA

Abstract

Pedestrians, bicyclists, and scooterists are Vulnerable Road Users (VRUs) in traffic accidents. The number of fatalities and injuries in traffic accidents involving vulnerable road users has been steadily increasing in the last two decades in the U.S., even though road vehicles now have perception sensors like cameras to detect risk and issue collision warnings or apply emergency braking. Perception sensors like cameras are highly affected by lighting and weather conditions. Cameras, radar, and lidar cannot detect vulnerable road users in partially occluded and occluded situations. This paper proposes the use of Vehicle-to-VRU communication to inform nearby vehicles of VRUs on trajectories with a potential collision risk. An Android smartphone app with low-energy Bluetooth (BLE) advertising is developed and used for this communication. The same app is also used to collect motion data of VRUs for training. VRU motion data are smoothed using a Kalman filter, and an LSTM neural network is used for future motion prediction. This information is used in an algorithm comparing Time-To-collision-Zone (TTZ) for the vehicle and VRU, and issues driver warnings with different severity levels. The warning severity level is based on the analysis of real data from a smart intersection for close vehicle and VRU interactions. The resulting driver warning system is demonstrated using proof-of-concept experiments. The method can easily be extended to a VRU collision-mitigation system.

Funder

Ford Alliance program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3