Privacy-Preserving Vertical Federated KNN Feature Imputation Method

Author:

Du Wenyou12ORCID,Wang Yichen1,Meng Guanglei1ORCID,Guo Yuming1

Affiliation:

1. College of Automation, Shenyang Aerospace University, Shenyang 110136, China

2. Chinese Academy of Sciences Shenyang Institute of Computing Technology Co., Ltd., Shenyang 110168, China

Abstract

Federated learning stands as a pivotal component in the construction of data infrastructure. It significantly fortifies the safety and reliability of data circulation links, facilitating credible sharing and openness among diverse subjects. The presence of missing data poses a pervasive and challenging issue in the implementation of federated learning. Current research on imputation missing values predominantly concentrates on centralized methods and horizontal federation scenarios. However, there is a notable absence of exploration in the context of vertical federated application scenarios. In this paper, the problem of missing imputation in vertical federated learning is investigated and a novel vertical federated k-nearest neighbors (KNN) imputation method is proposed. Extensive experiments are conducted using publicly available data sets to compare existing imputation methods, the results demonstrate the effectiveness and progress of our approach.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liao Ning province

PhD Start-up Fund of Shen Yang Aerospace University

Publisher

MDPI AG

Reference34 articles.

1. (2024, January 14). Regulation (EU) 2016/679 of the European Parliament and of the Council on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679.

2. Privacy and big data;Gaff;Computer,2014

3. IoT, big data, and artificial intelligence in agriculture and food industry;Misra;IEEE Internet Things J.,2020

4. Federated Machine Learning: Concept and Applications;Yang;ACM Trans. Intell. Syst. Technol.,2019

5. Yao, A.C.C. (1986, January 27–29). How to generate and exchange secrets. Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Toronto, ON, Canada.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3