Multi-Branch Spectral Channel Attention Network for Breast Cancer Histopathology Image Classification

Author:

Cao Lu1,Pan Ke1,Ren Yuan1,Lu Ruidong1,Zhang Jianxin1

Affiliation:

1. College of Computer Science and Engineering, Dalian Minzu University, Dalian 116650, China

Abstract

Deep-learning-based breast cancer image diagnosis is currently a prominent and growingly popular area of research. Existing convolutional-neural-network-related methods mainly capture breast cancer image features based on spatial domain characteristics for classification. However, according to digital signal processing theory, texture images usually contain repeated patterns and structures, which appear as intense energy at specific frequencies in the frequency domain. Motivated by this, we make an attempt to explore a breast cancer histopathology classification application in the frequency domain and further propose a novel multi-branch spectral channel attention network, i.e., the MbsCANet. It expands the interaction of frequency domain attention mechanisms from a multi-branch perspective via combining the lowest frequency features with selected high frequency information from two-dimensional discrete cosine transform, thus preventing the loss of phase information and gaining richer context information for classification. We thoroughly evaluate and analyze the MbsCANet on the publicly accessible BreakHis breast cancer histopathology dataset. It respectively achieves the optimal image-level and patient-level classification results of 99.01% and 98.87%, averagely outperforming the spatial-domain-dominated models by a large margin, and visualization results also demonstrate the effectiveness of the MbsCANet for this medical image application.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3