Scalable and Multi-Channel Real-Time Low Cost Monitoring System for PEM Electrolyzers Based on IoT Applications

Author:

Paredes-Baños Ana Belén1,Molina-Garcia Angel1ORCID,Mateo-Aroca Antonio1ORCID,López-Cascales José Javier2ORCID

Affiliation:

1. Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

2. Department of Chemical and Environmental Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain

Abstract

This paper discusses and evaluates a novel multi-channel real-time architecture aimed at monitoring a Proton Exchange Membrane (PEM) electrolyzer, both at the individual cell and stack levels. The proposed solution includes two primary subsystems: a hardware subsystem dedicated to data acquisition (DAQ) and a software subsystem focused on monitoring purposes. The DAQ subsystem utilizes an Arduino platform, being an affordable and open-source solution. The real-time monitoring data can be encoded in JSON format, widely used as a light-weight inter-exchange data format between a variety of IoT applications. They are also available to be transferred to Excel. Indeed, and to enhance convenience, the proposed system integrates graphs displaying a template based on Excel spreadsheets, which are commonly used in industrial environments. The current, voltage, temperature, and pressure data of both individual cells and stacks were monitored and collected, being configurable under a variety of ranges. As a case study, the validation of the system involved static and dynamic operational modes using a 1.2 kW PEM electrolyzer prototype (100 A, 1 A/cm2). The results successfully provided the monitored variables across individual cells and within the stack. The proposed approach exhibits relevant key characteristics such as scalability, flexibility, user-friendliness, versatility, and affordability and are suitable to monitor PEM electrolyzers in real-time at both the cell and stack levels.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3