Architectural Synthesis of Continuous-Flow Microfluidic Biochips with Connection Pair Optimization

Author:

Hu Xu123,Chen Zhen12,Chen Zhisheng4,Liu Genggeng123

Affiliation:

1. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China

2. Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China

3. Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou 350116, China

4. School of Informatics, Xiamen University, Xiamen 361004, China

Abstract

Continuous-flow microfluidic biochips are a type of biochip technology based on microfluidic channels that enable various biological experiments and analyses to be performed on a tiny chip. They have the advantages of a high throughput, high sensitivity, high precision, low cost, and quick response. In the architectural synthesis of continuous-flow microfluidic biochips (CFMBs), prior work has not considered reducing component interconnection requirements, which led to an increase in the number of connection pairs. In this paper, we propose an architectural synthesis flow for continuous-flow microfluidic biochips with connection pair optimization, which includes high-level synthesis, placement, and routing. In the high-level synthesis stage, our method reduces the need for component interconnections, which reduces the number of connection pairs. Our method performs fine-grained binding, ultimately obtaining high-quality binding and scheduling results for flow paths. Based on the high-quality binding results, we propose a port placement strategy based on port correlation and subsequently use a quadratic placer to place the components. During the routing stage, we employ a conflict-aware routing algorithm to generate flow channels to reduce conflicts between liquid transportation tasks. Experimental results on multiple benchmarks demonstrate the effectiveness of our method. Compared with the existing work, the proposed algorithm obtains average reductions of 35.34% in connection pairs, 24.30% in flow channel intersections, 21.71% in total flow channel length, and 18.39% in the execution time of bioassays.

Funder

National Natural Science Foundation of China

Fujian Natural Science Funds

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3