Exploring Explainable Artificial Intelligence Techniques for Interpretable Neural Networks in Traffic Sign Recognition Systems

Author:

Khan Muneeb A.1ORCID,Park Heemin1ORCID

Affiliation:

1. Department of Software, Sangmyung University, Cheonan 31066, Republic of Korea

Abstract

Traffic Sign Recognition (TSR) plays a vital role in intelligent transportation systems (ITS) to improve road safety and optimize traffic management. While existing TSR models perform well in challenging scenarios, their lack of transparency and interpretability hinders reliability, trustworthiness, validation, and bias identification. To address this issue, we propose a Convolutional Neural Network (CNN)-based model for TSR and evaluate its performance on three benchmark datasets: German Traffic Sign Recognition Benchmark (GTSRB), Indian Traffic Sign Dataset (ITSD), and Belgian Traffic Sign Dataset (BTSD). The proposed model achieves an accuracy of 98.85% on GTSRB, 94.73% on ITSD, and 92.69% on BTSD, outperforming several state-of-the-art frameworks, such as VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet, while also providing faster training and response times. We further enhance our model by incorporating explainable AI (XAI) techniques, specifically, Local Interpretable Model-Agnostic Explanations (LIME) and Gradient-weighted Class Activation Mapping (Grad-CAM), providing clear insights of the proposed model decision-making process. This integration allows the extension of our TSR model to various engineering domains, including autonomous vehicles, advanced driver assistance systems (ADAS), and smart traffic control systems. The practical implementation of our model ensures real-time, accurate recognition of traffic signs, thus optimizing traffic flow and minimizing accident risks.

Funder

Sangmyung University, South Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3