One-Stage Small Object Detection Using Super-Resolved Feature Map for Edge Devices

Author:

Huynh Xuan Nghia1ORCID,Jung Gu Beom1ORCID,Suhr Jae Kyu1ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

Despite the achievements of deep neural-network-based object detection, detecting small objects in low-resolution images remains a challenging task due to limited information. A possible solution to alleviate the issue involves integrating super-resolution (SR) techniques into object detectors, particularly enhancing feature maps for small-sized objects. This paper explores the impact of high-resolution super-resolved feature maps generated by SR techniques, especially for a one-stage detector that demonstrates a good compromise between detection accuracy and computational efficiency. Firstly, this paper suggests the integration of an SR module named feature texture transfer (FTT) into the one-stage detector, YOLOv4. Feature maps from the backbone and the neck of vanilla YOLOv4 are combined to build a super-resolved feature map for small-sized object detection. Secondly, it proposes a novel SR module with more impressive performance and slightly lower computation demand than the FTT. The proposed SR module utilizes three input feature maps with different resolutions to generate a super-resolved feature map for small-sized object detection. Lastly, it introduces a simplified version of an SR module that maintains similar performance while using only half the computation of the FTT. This attentively simplified module can be effectively used for real-time embedded systems. Experimental results demonstrate that the proposed approach substantially enhances the detection performance of small-sized objects on two benchmark datasets, including a self-built surveillance dataset and the VisDrone2019 dataset. In addition, this paper employs the proposed approach on an embedded system with a Qualcomm QCS610 and demonstrates its feasibility for real-time operation on edge devices.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3