A Low-Latency Approach for RFF Identification in Open-Set Scenarios

Author:

Zhang Bo12,Zhang Tao12,Ma Yuanyuan12,Xi Zesheng12,He Chuan12,Wang Yunfan12,Lv Zhuo3

Affiliation:

1. State Grid Smart Grid Research Institute Co., Ltd., Nanjing 210003, China

2. State Grid Key Laboratory of Information & Network, Nanjing 210003, China

3. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China

Abstract

Radio frequency fingerprint (RFF) identification represents a promising technique for lightweight device authentication. However, current research on RFF primarily focuses on the close-set recognition assumption. Moreover, the high computational complexity and excessive latency during the identification stage represent an intolerable burden for Internet of Things (IoT) devices. In this paper, we propose a deep-learning-based RFF identification framework in relation to open-set scenarios. Specifically, we leverage a simulated training scheme, in which we strategically designate certain devices as simulated unknowns. This allows us to fine-tune our extractor to better handle open-set recognition. Additionally, we construct an exemplar set that only contains representative RFF features to further reduce time consumption in the identification stage. The experiments are carried out on a hardware platform involving LoRa devices and using a USRP N210 software-defined radio receiver. The results show that the proposed framework can achieve 90.23% accuracy for rogue device detection and 93.85% accuracy for legitimate device classification. Furthermore, it is observed that using an exemplar set consisting of half the total data size can reduce the time overhead by 58% compared to using the entire dataset.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3