Visible Light Positioning-Based Robot Localization and Navigation

Author:

Chew Moi-Tin1ORCID,Alam Fakhrul2ORCID,Noble Frazer K.1ORCID,Legg Mathew1ORCID,Gupta Gourab Sen1ORCID

Affiliation:

1. Department of Mechanical and Electrical Engineering, Massey University, 229 Dairy Flat Highway, Auckland 0632, New Zealand

2. Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand

Abstract

Visible light positioning or VLP has been identified as a promising technique for accurate indoor localization utilizing pre-existing lighting infrastructure. Robot navigation is one of the many potential applications of VLP. Recent literature shows a small number of works on robots being controlled by fusing location information acquired via VLP that uses a rolling shutter effect camera as a receiver with other sensor data. This paper, in contrast, reports on the experimental performance of a cartesian robot that was controlled solely by a VLP system using a cheap photodiode-based receiver rigidly attached to the robot’s end-effector. The receiver’s position was computed using an inverse-Lambertian function for ranging followed by multi-lateration. We developed two novel methods to leverage the VLP as an online navigation system to control the robot. The position acquired from the VLP was used by the algorithms to determine the direction the robot needed to move. The developed algorithms guided the end-effector to move from a starting point to target/destination point(s) in a discrete manner, determined by a pre-determined step size. Our experiments consisted of the robot autonomously repeating straight line-, square- and butterfly-shaped paths multiple times. The results show median errors of 27.16 mm and 26.05 mm and 90 percentile errors of 37.04 mm and 47.48 mm, respectively, for the two methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3