QoS-Driven Slicing Management for Vehicular Communications

Author:

Tam Prohim1ORCID,Ros Seyha1,Song Inseok1,Kim Seokhoon12

Affiliation:

1. Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea

2. Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

Network slicing is introduced for elastically instantiating logical network infrastructure isolation to support different application types with diversified quality of service (QoS) class indicators. In particular, vehicular communications are a trending area that consists of massive mission-critical applications in the range of safety-critical, intelligent transport systems, and on-board infotainment. Slicing management can be achieved if the network infrastructure has computing sufficiency, a dynamic control policy, elastic resource virtualization, and cross-tier orchestration. To support the functionality of slicing management, incorporating core network infrastructure with deep learning and reinforcement learning has become a hot topic for researchers and practitioners in analyzing vehicular traffic/resource patterns before orchestrating the steering policies. In this paper, we propose QoS-driven management by considering (edge) resource block utilization, scheduling, and slice instantiation in a three-tier resource placement, namely, small base stations/access points, macro base stations, and core networks. The proposed scheme integrates recurrent neural networks to trigger hidden states of resource availability and predict the output of QoS. The intelligent agent and slice controller, namely, RDQ3N, gathers the resource states from three-tier observations and optimizes the action on allocation and scheduling algorithms. Experiments are conducted on both physical and virtual representational vehicle-to-everything (V2X) environments; furthermore, service requests are set to massive thresholds for rendering V2X congestion flow entries.

Funder

Korea government

National Research Foundation of Korea (NRF), Ministry of Education

BK21 FOUR

Soonchunhyang University Research Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3