DMCNet-Pro: A Model-Driven Multi-Pilot Convolution Neural Network for MIMO-OFDM Receivers

Author:

Li Pengyuan12,Zhu Tianlin2,Xin Yutong34,Yuan Gang2,Yu Xiong2,Lu Zejian4,Liu Zili4,Yan Qing3

Affiliation:

1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China

2. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China

3. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. China Academic of Electronics and Information Technology, Beijing 100041, China

Abstract

Nowadays, wireless communication technology is evolving towards high data rates, a low latency, and a high throughput to meet increasingly complex business demands. Key technologies in this direction include multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM). This research is based on our previous work DMCNet. In this article, we focus on studying the deep learning (DL) application of neural networks to solve the reception of single-antenna OFDM signals. Specifically, in multi-antenna scenarios, the channel model is more complex compared to single-antenna cases. By leveraging the characteristics of DL, such as automatic learning of parameters using deep neural networks, we treat the reception process of MIMO-OFDM signals as a black box and utilize neural networks to accomplish the signal reception task. Moreover, we propose a data-driven multi-pilot convolution neural network for MIMO-OFDM receivers (DMCNet). By incorporating complex convolution and complex fully connected structures, we design a receiver network to recover the transmitted signals from the received signals. We validate the accuracy and robustness of DMCNet under different channel conditions, comparing the bit error rates with different schemes. Additionally, we discuss the factors influencing various channel effects. At the same time, we also propose a model-driven scheme, DMCNet-pro, which has a higher accuracy and fewer parameters in some scenarios. The experimental results demonstrate that the DL-based reception scheme exhibits promising feasibility in terms of accuracy and interference resistance when compared to traditional approaches.

Funder

National Key Technologies R&D Program

China Scholarship Council

Belt and Road Initiative Innovative Talent Exchange Foreign Expert Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3