Dual-Branch Cross-Attention Network for Micro-Expression Recognition with Transformer Variants

Author:

Xie Zhihua12ORCID,Zhao Chuwei1

Affiliation:

1. Key Laboratory of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China

2. Nanchang Key Laboratory of Failure Perception & Green Energy Materials Intelligent Manufacturing, Nanchang 330038, China

Abstract

A micro-expression (ME), as a spontaneous facial expression, usually occurs instantaneously and is difficult to disguise after an emotion-evoking event. Numerous convolutional neural network (CNN)-based models have been widely explored to recognize MEs for their strong local feature representation ability on images. However, the main drawback of the current methods is their inability to fully extracting holistic contextual information from ME images. To achieve efficient ME learning representation from diverse perspectives, this paper uses Transformer variants as the main backbone and the dual-branch architecture as the main framework to extract meaningful multi-modal contextual features for ME recognition (MER). The first branch leverages an optical flow operator to facilitate the motion information extraction between ME sequences, and the corresponding optical flow maps are fed into the Swin Transformer to acquire motion–spatial representation. The second branch directly sends the apex frame in one ME clip to Mobile ViT (Vision Transformer), which can capture the local–global features of MEs. More importantly, to achieve the optimal feature stream fusion, a CAB (cross attention block) is designed to interact the feature extracted by each branch for adaptive learning fusion. The extensive experimental comparisons on three publicly available ME benchmarks show that the proposed method outperforms the existing MER methods and achieves an accuracy of 81.6% on the combined database.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Jiangxi Province of China

Jiangxi Province Graduate Innovation Special Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3