A Time Series-Based Approach to Elastic Kubernetes Scaling

Author:

Yuan Haibin1,Liao Shengchen1

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Abstract

With the increasing popularity of cloud-native architectures and containerized applications, Kubernetes has become a critical platform for managing these applications. However, Kubernetes still faces challenges when it comes to resource management. Specifically, the platform cannot achieve timely scaling of the resources of applications when their workloads fluctuate, leading to insufficient resource allocation and potential service disruptions. To address this challenge, this study proposes a predictive auto-scaling Kubernetes Operator based on time series forecasting algorithms, aiming to dynamically adjust the number of running instances in the cluster to optimize resource management. In this study, the Holt–Winter forecasting method and the Gated Recurrent Unit (GRU) neural network, two robust time series forecasting algorithms, are employed and dynamically managed. To evaluate the effectiveness, we collected workload metrics from a deployed RESTful HTTP application, implemented predictive auto-scaling, and assessed the differences in service quality before and after the implementation. The experimental results demonstrate that the predictive auto-scaling component can accurately predict the future trend of the metrics and intelligently scale resources based on the prediction results, with a Mean Squared Error (MSE) of 0.00166. Compared to the deployment using a single algorithm, the cold start time is reduced by 1 h and 41 min, and the fluctuation in service quality is reduced by 83.3%. This process effectively enhances the quality of service and offers a novel solution for resource management in Kubernetes clusters.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3