Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention

Author:

Zhang Xiaoqian123ORCID,Li Junlin12ORCID,Zhang Wei12ORCID,Xu Yansong123ORCID,Li Feng123ORCID

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In recent years, due to the wide application of 3D vision in the fields of autonomous driving, robot navigation, and the protection of cultural heritage, 3D point cloud registration has received much attention. However, most current methods are time-consuming and are very sensitive to noises and outliers, resulting in low registration accuracy. Therefore, we propose a two-stage framework based on graph neural network and attention—TSGANet, which is effective in registering low-overlapping point cloud pairs and is robust to variable noises as well as outliers. Our method decomposes rigid transformation estimation into two stages: global estimation and fine-tuning. At the global estimation stage, multilayer perceptrons are employed to estimate a seven-dimensional vector representing rigid transformation directly from the fusion of two initial point cloud features. For the fine-tuning stage, we extract contextual information through an attentional graph neural network consisting of attention and feature-enhancing modules. A mismatch-suppression mechanism is also proposed and applied to keep our method robust to partially visible data with noises and outliers. Experiments show that our method yields a state-of-the-art performance on the ModelNet40 dataset.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Reference24 articles.

1. Besl, P.J., and McKay, N.D. (1991, January 14–15). Method for registration of 3-D shapes. Proceedings of the Sensor fusion IV: Control Paradigms and Data Structures, Boston, MA, USA.

2. Object modelling by registration of multiple range images;Chen;Image Vis. Comput.,1992

3. Rusinkiewicz, S., and Levoy, M. (June, January 28). Efficient variants of the ICP algorithm. Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada.

4. Linear least-squares optimization for point-to-plane icp surface registration;Low;Chapel Hill Univ. N. C.,2004

5. Evaluation of the ICP Algorithm in 3D Point Cloud Registration;Li;IEEE Access,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3