Compact Sub-6 GHz Four-Element Flexible Antenna for 5G Applications

Author:

Abdelghany Mahmoud A.12ORCID,Ibrahim Ahmed A.23ORCID,Mohamed Hesham. A.4ORCID,Tammam Emad23

Affiliation:

1. Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addwasir 11991, Saudi Arabia

2. Electronics and Communications Engineering Department, Minia University, Minia 61519, Egypt

3. Communications and Computer Engineering Department, Nahda University, Benisuef 62764, Egypt

4. Electronics Research Institute, Microstrip Circuits Joseph Tito St, Huckstep, El Nozha, Cairo 11843, Egypt

Abstract

This paper proposes the design of a compact sub-6 GHz four-port flexible antenna for utilization in 5G applications. A two-arm monopole with a coplanar waveguide feed line printed on a flexible substrate was proposed to shape the single-element antenna. The single element was designed, fabricated, and measured first; then, four copies of the single element were organized on a single flexible substrate to compose the four-port antenna. The MIMO antenna was simulated, fabricated, and experimentally measured. All the simulations and measurements of the flexible single element and MIMO antennas are presented. The presented MIMO antenna showed good impedance characteristics, with a deep level of −24 dB from 3 to 4.12 GHz. The antenna had omnidirectional and bi-directional patterns in the φ = 0° and φ = 90° planes. As an important parameter evaluation for MIMO, the mutual coupling between the different ports was investigated. The diversity gain (DG), the total active reflection coefficient (TARC), the mean effective gain (MEG), the envelop correlation coefficient (ECC), and the channel capacity loss (CCL) parameters were investigated and showed good performance. All the obtained simulation results were in a high degree of agreement with the measurement results, supporting the usage of the suggested antenna in 5G communications.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3