Multi-Agent-Deep-Reinforcement-Learning-Enabled Offloading Scheme for Energy Minimization in Vehicle-to-Everything Communication Systems

Author:

Duan Wenwen1,Li Xinmin23ORCID,Huang Yi4ORCID,Cao Hui1,Zhang Xiaoqiang1

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China

2. College of Computer Science, Chengdu University, Chengdu 610100, China

3. Guangdong Provincial Key Laboratory of Future Networks of Intelligence, The Chinese University of Hong Kong, Shenzhen 518172, China

4. Department of Information and Communication Engineering, Tongji University, Shanghai 201804, China

Abstract

Offloading computation-intensive tasks to mobile edge computing (MEC) servers, such as road-side units (RSUs) and a base station (BS), can enhance the computation capacities of the vehicle-to-everything (V2X) communication system. In this work, we study an MEC-assisted multi-vehicle V2X communication system in which multi-antenna RSUs with liner receivers and a multi-antenna BS with a zero-forcing (ZF) receiver work as MEC servers jointly to offload the tasks of the vehicles. To control the energy consumption and ensure the delay requirement of the V2X communication system, an energy consumption minimization problem under a delay constraint is formulated. The multi-agent deep reinforcement learning (MADRL) algorithm is proposed to solve the non-convex energy optimization problem, which can train vehicles to select the beneficial server association, transmit power and offloading ratio intelligently according to the reward function related to the delay and energy consumption. The improved K-nearest neighbors (KNN) algorithm is proposed to assign vehicles to the specific RSU, which can reduce the action space dimensions and the complexity of the MADRL algorithm. Numerical simulation results show that the proposed scheme can decrease energy consumption while satisfying the delay constraint. When the RSUs adopt the indirect transmission mode and are equipped with matched-filter (MF) receivers, the proposed joint optimization scheme can decrease the energy consumption by 56.90% and 65.52% compared to the maximum transmit power and full offloading schemes, respectively. When the RSUs are equipped with ZF receivers, the proposed scheme can decrease the energy consumption by 36.8% compared to the MF receivers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Guangdong Provincial Key Laboratory of Future Networks of Intelligence, the Chinese University of Hong Kong

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3