Precision Data-Driven Collision Localization with a Dedicated Matrix Template for Electric Vehicle Automatic Charging

Author:

Lin Haoyu1ORCID,Quan Pengkun1ORCID,Liang Zhuo1,Lou Ya’nan2,Wei Dongbo1,Di Shichun1

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Abstract

With the increasing maturity of autonomous driving technology and automated valet parking, public awareness of robot-based automatic charging for electric vehicles has gradually increased. The positioning of the charging port for electric vehicles is a prerequisite for achieving automatic charging. The common approach is to use visual methods for charging port positioning. However, due to factors such as external light conditions, humidity, and temperature, the visual system may experience insufficient positioning accuracy, leading to difficulties in executing the charging plug-in task. To address this issue, this paper proposes a data-driven collision localization method based on the vibration signal generated by the contact. During the data collection process, we first introduce a collision point matrix template suitable for automatic charging plug-in. This template covers the entire charging port and supports the acquisition of dense collision vibration data. Using this collision point matrix template, the collision localization problem can be transformed into a classification problem of collision vibration information corresponding to different collision points. Then, the collision vibration data obtained, based on this template, are used to train the collision localization model, which mainly consists of an echo state network (ESN) and support vector machine (SVM). The AUBO-i5 6-DOF articulated robot is employed to test the proposed collision localization method under different joint configurations. The simulated experimental results demonstrate the effectiveness of the proposed collision localization method, showcasing a promising localization accuracy and root mean square error (RMSE).

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3