Efficient Closed-Form Solutions for Visible Light Positioning in Low-Cost IoT Devices

Author:

Zhu Xuefen1,Mo Lufeng1,Wu Xiaoping2ORCID

Affiliation:

1. Information and Educational Technology Center, Zhejiang A&F University, Hangzhou 311300, China

2. School of Information Engineering, Huzhou University, Huzhou 313000, China

Abstract

Visible light positioning (VLP) has drawn great attention in the field of indoor positioning as light communication has been popularized in low-cost Internet-of-Things (IOT) devices. In this paper, we investigate the VLP problem using the received signal strength (RSS) and by only considering the line-of-slight (LOS) propagation. The RSS-based VLP problem is highly nonlinear, and its solutions may be trapped in local optima without a good initial guess. To circumvent this difficulty, we propose closed-form solutions of the VLP problem considering a known or unknown user orientation. By applying the weighted least squares (WLS) method, the closed-form solutions are divided into two stages. In the stage-one WLS solution, the nonlinear VLP problem is transformed into a pseudo-linear form by introducing some auxiliary variables, which are considered to be independent of each other. The estimates of the stage-one WLS solution are further refined in the stage-two WLS solution by exploiting the constrained relationships among these defined variables. The simulation results show that the stage-two WLS solution provides good estimates for the user position and orientation. The proposed stage-two WLS solution outperforms the existing methods especially at a high signal-to-noise ratio (SNR).

Funder

YunZhong University Foundation

Zhejiang Provincial Natural Science Foundation

Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3