Detection-Free Object Tracking for Multiple Occluded Targets in Plenoptic Video

Author:

Yong Yunjeong1,Kang Jiwoo2ORCID,Oh Heeseok1ORCID

Affiliation:

1. Department of Applied AI, Hansung University, Seoul 02876, Republic of Korea

2. Division of Artificial Intelligence Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

Multiple object tracking (MOT) is a fundamental task in vision, but MOT techniques for plenoptic video are scarce. Almost all 2D MOT algorithms that show high performance mostly use the detection-based method which has the disadvantage of operating only for a specific object. To enable tracking of arbitrary desired objects, this paper introduces a groundbreaking detection-free tracking method for MOT in plenoptic videos. The proposed method deviates from traditional detection-based tracking methods, emphasizing the challenges of tracking targets with occlusions. The paper presents specialized algorithms that exploit the multifocal information of plenoptic video, including the focal range restriction and dynamic focal range adjustment schemes to secure robustness for occluded object tracking. To the improvement of the spatial searching capability, the anchor ensemble and the dynamic change of spatial search region algorithms are also proposed. Additionally, in terms of MOT, to reduce the computation time involved, the motion-adaptive time scheduling technique is proposed, which improves computation speed while guaranteeing a certain level of accuracy. Experimental results show a significant improvement in tracking performance, with a 77% success rate based on intersection over union for occluded targets in plenoptic videos, marking a substantial advancement in the field of plenoptic object tracking.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3