VF-Mask-Net: A Visual Field Noise Reduction Method Using Neural Networks

Author:

Zhang Zhenyu1ORCID,Zhu Haogang123,Li Lei4

Affiliation:

1. State Key Laboratory of Software Development Environment Lab, Beihang University, Beijing 100191, China

2. Key Laboratory of Data Science and Intelligent Computing, Zhongfa Aviation Institute, Beihang University, Hangzhou 311115, China

3. Zhongguancun Laboratory, Beijing 100194, China

4. School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

Abstract

Visual Field (VF) measurements, crucial for diagnosing and treating glaucoma, often contain noise originating from both the instrument and subjects during the response process. This study proposes a neural network-based denoising method for VF data, obviating the need for ground truth labels or paired measurements. Using a mask-imposed VF as an input for the neural network, while the original VF serves as a training label, we evaluated performance metrics such as the accuracy, precision, and sensitivity of denoised VFs. Orthogonal experiments were also employed to assess the impact of mask number, mask structure, and replacement strategy on model accuracy. This study reveals that mask number, replacement strategy, and their interaction significantly affect the accuracy of the denoising model. Under recommended parameters, VF-Mask-Net effectively enhances the accuracy and precision of VF measurements. Furthermore, in deterioration detection tasks, denoised VFs display heightened sensitivity compared to their pre-denoising counterparts.

Funder

Major Project of Science and Technology Innovation 2030—New Generation Artificial Intelligence

National Natural Science Foundation of China

Publisher

MDPI AG

Reference40 articles.

1. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis;Flaxman;Lancet Glob. Health,2017

2. Henson, D.B. (2000). Visual Fields, Butterworth-Heinemann Medical.

3. Sharma, V., Shen, L.Q., Pasquale, L., Elze, T., Boland, M.V., Wellik, S.R., De Moraes, G., Myers, J.S., Yousefi, S., and Wang, M. (2022, January 1–4). A Deep Autoencoder Model to Denoise Visual Fields in Glaucoma. Proceedings of the Investigative Ophthalmology & Visual Science, Denver, Colorado.

4. Identification of progressive glaucomatous visual field loss;Spry;Surv. Ophthalmol.,2002

5. Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies;Schiefer;Investig. Ophthalmol. Vis. Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3