Wide-Load-Range Double-T Resonant Converter for CC/CV Battery Charging

Author:

Wei Xile1,Shi Yicheng1,Li Gang2,Zhang Zhen1,Chang Siyuan1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Abstract

This article proposes a load-independent constant current (CC) or constant voltage (CV) output Double-T circuit (DT) for electrical vehicles (EVs) or electrical bikes (EBs) charging systems to improve the conversion efficiency over a wide-load range during battery charging processes. Among available studies, the LLC converter is a widely adopted resonant topology for EV or EB charging. However, in CC-CV charging, the wide output voltage caused by the wide-load range requires a wide switching frequency range to achieve, which decreases the efficiency in the wide-load range. To address such issues, in this article, two T-circuits are cascaded to form an output load-independent DT with fixed duty cycle and frequency, which can implement CC-CV modes and zero phase angle at the resonant frequency simultaneously, which not only significantly reduces reactive power in energy storage elements but also eliminates the adverse effect of efficiency reduction owing to switching frequency variation. Finally, based on experimental results, the variation of current in CC mode is within 4.18%, and that of voltage is within 4.44% in CV mode, which demonstrates the inherent load-independent capability of the DT converter. During the battery pack charging experiment, the peak dc-dc conversion efficiency reached 96.70% and the average conversion efficiency was higher than 94.01%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3