Liquid Crystal-Filled 60 GHz Coaxially Structured Phase Shifter Design and Simulation with Enhanced Figure of Merit by Novel Permittivity-Dependent Impedance Matching

Author:

Li Jinfeng123ORCID,Li Haorong1

Affiliation:

1. Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

3. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

This work serves as the first simulation investigation to tackle the liquid crystal (LC)-filled coaxially structured continuously variable phase shifter at 60 GHz, wherein the LCs act as single tunable dielectrics fully occupying the millimeter-wave (mmW) power transmitted (i.e., free of leakage or interference). Impedance and effective dielectric constant computations are settled, followed by the quantification of the interplay between the dielectric thickness and the dielectric constant (Dk) for a controlled 50 Ω impedance. Geometry’s aspect ratio (AR) effects are exploited for the coaxially accommodating topology filled with mmW-tailored LCs with an operatable Dk range of 2.754 (isotropic state) to 3.3 (saturated bias state). In addition to the proposed structure’s noise-free advantages, a novel figure of merit (FoM) enhancement method based on Dk-selection-based impedance matching is proposed. The optimum FoM design by simulation exhibits a 0–180.19° continuously variable phase shift with a maximum insertion loss of 1.75871 dB, i.e., a simulated FoM of 102.46°/dB when the LC-filled coaxial geometry is 50 Ω and matched with the Dk of 2.8, corresponding to the dielectric thickness of 0.34876 mm and line length of 15.92 mm. The envisioned device fabrication and assembly processes are free of the conventional polyimide alignment agent and the related thermal and electrical concerns. Significant cost reduction and yield improvement can hence be envisaged. The topology can also serve as a test structure for broadband characterizations of LC materials and new electro-optical effects.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3