An Adaptive Control Method and Learning Strategy for Ultrasound-Guided Puncture Robot

Author:

Li Tao1,Zeng Quan1,Li Jinbiao1,Qian Cheng1,Yu Hanmei1,Lu Jian2,Zhang Yi2,Zhou Shoujun1ORCID

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China

Abstract

The development of a new generation of minimally invasive surgery is mainly reflected in robot-assisted diagnosis and treatment methods and their clinical applications. It is a clinical concern for robot-assisted surgery to use a multi-joint robotic arm performing human ultrasound scanning or ultrasound-guided percutaneous puncture. Among them, the motion control of the robotic arm, and the guiding and contact scanning processes of the ultrasonic (US-) probe determine the diagnosis effect, as well as the accuracy and safety of puncture surgery. To address these challenges, this study developed an intelligent robot-assisted system integrating autonomous US inspection and needle positioning, which has relation to several intelligent algorithms such as adaptive flexible control of the robot arm, autonomous US-scanning, and real-time attitude adjustment of the puncture needle. To improve the cooperativity of the spatial operation of the robot end-effector, we propose an adaptive flexible control algorithm that allows the operator to control the robot arm flexibly with low damping. To achieve the stability and uniformity of contact detection and imaging, we introduced a self-scanning method of US-probe based on reinforcement learning and built a software model of variable stiffness based on MuJoco to verify the constant force and velocity required by the end mechanism. We conducted a fixed trajectory scanning experiment at a scanning speed of 0.06 m/s. The force curve generally converges towards the desired contact force of 10 N, with minor oscillations around this value. For surgical process monitoring, we adopted the puncture needle detection algorithm based on Unet++ to acquire the position and attitude information of the puncture needle in real time. In short, we proposed and verified an adaptive control method and learning strategy by using an UR robotic arm equipped with a US-probe and puncture needle, and we improved the intelligence of the US-guided puncture robot.

Funder

National Key R&D Project of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Technology Innovation Commission

Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3