An Improved Gravitational Search Algorithm for Task Offloading in a Mobile Edge Computing Network with Task Priority

Author:

Xu Ling1ORCID,Liu Yunpeng2ORCID,Fan Bing3ORCID,Xu Xiaorong1ORCID,Mei Yiguo4ORCID,Feng Wei1ORCID

Affiliation:

1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. Zhejiang Haikang Zhilian Technology Co., Ltd., Hangzhou 311113, China

3. Frontier Technology Service Center, Hangzhou Dianzi University, Hangzhou 310018, China

4. Huaxin Consulting Co., Ltd., Hangzhou 310051, China

Abstract

Mobile edge computing (MEC) distributes computing and storage resources to the edge of the network closer to the user and significantly reduces user task completion latency and system energy consumption. This paper investigates the problem of computation offloading in a three-tier mobile edge computing network composed of multiple users, multiple edge servers, and a cloud server. In this network, each user’s task can be divided into multiple subtasks with serial and parallel priority relationships existing among these subtasks. An optimization model is established with the objective of minimizing the total user delay and processor cost under constraints such as the available resources of users and servers and the interrelationships among the subtasks. An improved gravitational search algorithm (IGSA) is proposed to solve this optimization model. In contrast with the other gravitational search algorithm, the convergence factor is introduced in the calculation of the resultant force and the crossover operation in a genetic algorithm is performed when generating the new particles during each iteration. The simulation results show that the proposed IGSA greatly improves the system performance compared with the existing algorithms.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3