Degradation Cost Analysis of Li-Ion Batteries in the Capacity Market with Different Degradation Models

Author:

Gailani AhmedORCID,Al-Greer Maher,Short MichaelORCID,Crosbie Tracey

Abstract

Increased deployment of intermittent renewable energy plants raises concerns about energy security and energy affordability. Capacity markets (CMs) have been implemented to provide investment stability to generators and secure energy generation by reducing the number of shortage hours. The research presented in this paper contributes to answering the question of whether batteries can provide cost effective back up services for one year in this market. The analysis uses an equivalent circuit lithium ion battery model coupled with two degradation models (empirical and semi-empirical) to account for capacity fade during battery lifetime. Depending on the battery’s output power, four de-rating factors of 0.5 h, 1 h, 2 h and 4 h are considered to study which de-rating strategy can result in best economic profit. Two scenarios for the number of shortage hours per year in the CM are predicted based on the energy demand data of Great Britain and recent research. Results show that the estimated battery profit is maximum with 2 h and 1 h de-rating factors and minimum with 4 h and 0.5 h. Depending on the battery degradation model used, battery degradation cost can considerably impact the potential profit if the battery’s temperature is not controlled with adequate thermal management system. The empirical and semi-empirical models predict that the degradation cost is minimum at 5 °C and 25 °C respectively. Moreover, both models predict degradation is minimum at lower battery charge levels. While the battery’s capacity fade can be minimized to make some profits from the CM service, the increased shortage hours can make providing this service not economically viable.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3