Abstract
Chaos through-wall imaging radar has attracted wide attention due to its inherent low probability of detection/interception, strong anti-jamming, and high resolution. However, the target response is usually overwhelmed by strong clutter. This paper proposes an imaging-then-decomposition method based on two-stage robust principal component analysis (RPCA) to remove the clutter and recover the target image. The proposed method firstly focuses the energy of the preprocessing data by the back-projection imaging algorithm; then, it performs matrix decomposition on the full and the sparse component of the focused data, in succession, by the RPCA algorithm. Simulation and experimental results show that the proposed method can suppress the clutter dramatically and indicate human targets distinctly. Compared with the traditional methods, it has effectiveness and superiority in improving the signal-to-clutter ratio.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanxi Province
Key Research and Development Project of Shanxi Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献