Abstract
Environmental goals set by world leaders to normalize climate changes are quite difficult to achieve without renewable power generation and suitable transmission technologies like low-frequency AC transmission (LFAC). The LFAC is nowadays becoming a popular choice for long-distance power transmission due to its high efficiency and low losses. This research work investigates the feasibility of employing the LFAC system for subsea transmission and distribution of 58 MW power. In this paper, the simulation model of the LFAC-based subsea transmission and distribution system is presented. This model is composed of several parts such as hexverter as a frequency converter, where a novel control strategy to optimize its zero-sequence circulating current is employed. Detailed mathematical modeling based on active, reactive power constraints and DQ transformation is performed to achieve the control strategy for zero-sequence current optimization. An offshore wind farm is proposed to be integrated with the LFAC subsea system to fulfill the compatibility requirements of the system. The control system of both the grid side and the machine-side inverter of the wind farm is designed to eliminate the real-time disturbances such as wind speed fluctuations and harmonics due to heavy inductive load operating at 16 Hz. To drive the subsea pump, a vector control-based variable-speed drive is employed for the heavy induction motor. A 5 MW, 16 Hz RL load is also added in the model to analyze the effect of general-purpose load. Each component of this system is carefully designed to make it as close to real-time as possible. The whole system is designed for 16 Hz and is compared with the standard 50 Hz system to validate this design.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献